Microstructural changes of AISI 316L due to structural sensitization and its influence on the fatigue properties

Sylvia Dundeková, František Nový, Stanislava Fintová

Abstract


Mechanical and fatigue properties of material are dependent on its microstructure. The microstructure of AISI 316L stainless steel commonly used for the production of medical tools, equipment and implants can be easily influenced by its heat treatment. Microstructural changes and fatigue properties of AISI 316L stainless steel due to the heat treatment consisted of annealing at the temperature of 815°C with the dwell time of 500 hours were analyzed in the present paper. Precipitation of intermetallic phases and carbides was observed as a response of the material to the applied heat treatment. Small negative influence was observed in the case of fatigue region bellow 105 cycles; however the fatigue limit remains unchanged due to the structural sensitization.


Keywords


AISI 316L; structural sensitization; rotating bending fatigue test

Full Text:

PDF

References


I. Hrivňák: Progresívne materiály a technológie : biokompatibilné materially (Progressive materials: biocompatible materiasl). TU Košice, Košice 2010.

M. Wollmann, M. Mhaede, L. Wagner: Effect of Austenite Stability on Phase Transformation and Fatigue Performance of Stainless Steels after Various Mechanical Surface Treatments, http://www.shotpeener.com/library/pdf/2011047.pdf.

Y. V. Murty: In: Proceeding of the Materials and Processes for Medical Devices Conference, ASM International California 2004. http://www.asminternational.org/pdf/XXspotlightsXX/Murty_paper.pdf.

B. Hadzima, V Škorík, L. Borbás, L. Oláh: Mater. Eng. – Mater. Inž. 15(3) (2008) 27-30.

M. Naverro, A. Michiardi, O. Castano, J. A. Planell: J. R. Soc. Interface 5(27) (2008) 1137-1158.

STEEL.S SLOVAKIA, s.r.o.: Hutné antikorové materiály. http://www.steels.sk/katalogSK.pdf.

T. Liptáková: Bodová korózia nehrdzavejúcich ocelí (Point corrosion of stainless steels), EDIS, Žilina 2009.

J. Barcik: Materials Science and Technology 4(1) (1988) 5–15.

B. Weiss, R. Stickler: Metallurgical and Materials Transactions B 3(4) (1972) 851-866.

A. F. Padilha, P. R. Rios: ISIJ International 42(4) (2002) 325–337.

M. Rieth et al. Creep of the Austenitic Steel AISI 316 L(N): Experiments and Models. http://bibliothek.fzk.de/zb/berichte/FZKA7065.pdf.

H. Wiegand, M. Doruck: Arch. Eisenhüttenwes 8 (1962) 559-566.

M. Minami, H. Kimura, Y. Ihara: Materials Science and Technology 2 (1986) 795-806.

T. Sourmail: Materials Science and Technology 17 (2001) 1-14.


Refbacks

  • There are currently no refbacks.




Copyright (c) 2014 Sylvia Dundeková, František Nový, Stanislava Fintová

License URL: http://creativecommons.org/licenses/by-nc-nd/3.0/

................................

Articles published in the journal of Materials Engineering / Materialove inzinierstvo are indexed in Directory of Open Access Journals, Index Copernicus International, Google Scholar, Open J-GateBielefeld Academic Search Engine, Academic journal database, The Open Access Digital Library, ABC Chemistry - free chemical information, New jour, Academic Keys, Ulrich's Serials Solutions (a Proquest Business), EBSCO Academic Search, SHERPA/RoMEOGenamics JournalSeek, New York University Libraries, TrueserialsProQuest Database: ProQuest Engineering Journals, Cornell University Library,Scientific indexing services. You can find us on Facebook, Google Groups and Linked IN.